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Abstract This paper addresses the modeling and simulation of a homogeneous disk that
undergoes plane motion constrained to be in permanent contact with and in the same plane
as a two-dimensional curve described by a parametric equation. Except for the elemen-
tary cases in which the curve is a straight line or an arc of circumference, the investigated
problem presents significant challenges to both modeling and simulation. In addition to the
necessity of using differential geometry methods to calculate local geometrical properties
of the motion, this system exhibits typical difficulties of non-smooth dynamics. Different
modes of operation require the synthesis of suitable rules for switching systems of differ-
ential equations and, due to the discontinuities caused by the exchange of dynamic models,
numerical integration methods suitable for solving stiff problems are necessary. It should
also be emphasized that the dynamic model here developed shows the Painlevé’s paradox,
caused by the application of a simplified law of friction (Coulomb’s law) to a rigid body
subjected to an unilateral constraint. Among the results obtained in this work, we would like
to highlight the following: (i) the realization that both the geometry of the contact curve and
that followed by the center of mass of the disk must be considered to construct a correct
dynamic model for the motion; (ii) a detailed procedure to identify the instant the disk stops
sliding and initiates a pure rolling motion on the two-dimensional track represented by a C2

class curve C in parametric form; (iii) the realization that, for arbitrary geometries of flat
two-dimensional curves of class C2 and simplified models of friction, it is not possible to
establish an arbitrary initial kinematic condition (a necessity for integrating the equations
of motion) without incurring in a paradoxical result, known in the literature as Painlévé’s
paradox. We consider that the approach adopted in this work might contribute to building
dynamic models of hybrid systems, especially those with non-elementary geometric char-
acteristics.
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1 Introduction

The plane motion of a disk that rolls and slides in contact with a curve, be it a horizontal or
an inclined straight line, or still an arc of a circumference, is a classic problem of rigid-body
dynamics quite present in textbooks adopted in undergraduate engineering courses [1, 11]
as well as in articles of Physics education journals [6, 19, 20]. Due to the plane motion
constraint and the simplicity of the geometry of those curves, it is possible to adopt an
algebraic approach to finding a solution to these problems, but considering a given instant
of the motion, not its evolution over time. In this case, Newton’s and Euler’s equations,
combined with the friction laws, are solved altogether to determine the reaction forces, the
acceleration of the center of mass and the disk angular acceleration at a given instant.

As there is a consensus that the plane motion of a disk in contact with a straight line or an
arc of a circle is a completely solved problem, simulation and analysis of these movements
has been rarely approached in recent scientific articles. On the other hand, the classic three-
dimensional motion of a disk that rolls and slides on a flat surface, continues to be the
subject of numerous scientific articles, since, for this problem, the trajectories in the phase
space exhibit quite complex geometry, which provokes interesting discussions in the field
of nonlinear dynamics. In the following paragraphs of this section, we will present a brief
summary of some articles that investigated the dynamics of the 3D movement of a disc in
contact with a flat surface.

An article by [12] addresses the integrability of the equations of motion of the disk. The
analysis encompasses both the rolling and the sliding motions, but in a exclusive way (i.e., it
is either supposed that friction forces act and the disk rolls without slipping, or that friction
forces are negligible and the disk slides). Simulations of the mathematical models generated
the necessary data for the construction of the bifurcation diagrams, which were then found
to be of two types—saddle-node and pitchfork.

The chaotic phenomena exhibited by the phase space trajectories representing the dy-
namics of the motion of the disk were also investigated in the article of [2], but these authors
considered only the case of pure rolling motion. Contrary to results previously accepted in
the literature as true, these authors have proved through simulations that, for almost all ini-
tial conditions compatible with pure rolling motion, the trajectories described by the point
of contact of the disk with the surface are bounded.

The same problem was studied by [16], who used a law of friction that interpolates be-
tween the laws of dry and viscous friction; this greatly facilitated the numerical implementa-
tion of the dynamics equations. The authors perform a rigorous mathematical analysis, with
the intention of identifying the initial conditions of the movement that produce stationary
solutions as well as the ranges of variation compatible with the stability of these solutions.

The movement of the disk was experimentally investigated using computer vision tech-
niques [13]. From the sequences of images taken by a video camera, and using Fourier
analysis, the temporal evolution of the angles of precession ψ , nutation θ , and spin φ of the
disk were estimated for different initial values of ψ , θ , φ, determined analytically in order to
satisfy the pure rolling motion condition. These experiments showed that, in fact, no sliding
of the disk was observed while the nutation angle was smaller than � 80◦. The authors thus
concluded that the rolling friction is primarily responsible for the loss of energy in the early
stages of the disk movement.

The 3D motion of the disk was thoroughly studied by [8]. The computational model
developed by these authors predicts the possibility of occurrence of multiple transitions
between the two characteristic modes of movement of the disk—sliding and pure rolling
motion. Although the mathematical model is based on the rigid-body hypothesis, the authors



Motion of a disk in contact with a parametric 2D curve and Painlevé’s 429

conjecture that the large variations of magnitude of the normal force observed during the
final stage of the simulations would be related to events of contact loss and the occurrence
of impulses which would give rise to the characteristic increase in the audible frequency of
the sound during the final phase of the disk movement.

It is important to stress that the above-mentioned articles, with the exception of [8],
analyse either the rolling or the sliding movements of the disk. Such approaches are suitable
for investigating problems in nonlinear dynamics, encompassing all the questions related to
the geometry of the phase space, but prevents the discussion of the important problem of
non-smooth dynamics, concerning the identification of the instant of transition between the
modes of motion.

In the present article, we will explore, with the aid of numerical simulations, the dynam-
ics of a homogeneous rigid disk undergoing plane motion constrained to maintain contact
with a generic two-dimensional curve C represented in parametric form; in addition, the
disk never quits the plane of the bi-dimensional curve. Despite its apparent simplicity, such
a problem presents unexpected modeling and simulation challenges, unless the curve is a
straight line or an arc of circumference; those aspects, to the knowledge of the authors, have
not yet been explored in the literature.

The paper is organized as follows: In Sect. 2, the geometry of the contact curve is de-
scribed using curvilinear coordinates. In Sect. 3 the Lagrange equations are used to build the
disk dynamical model in its two modes of operation. The state-space model of the disk is
presented in Sect. 4. The inherent simulation difficulties are stressed and solutions to over-
come them are proposed in Sect. 5. Sections 6 and 7, respectively, display the simulation
results and conclusions of the work.

2 Description of the track and its geometric properties

Considering the curvilinear abscissa S as a parameter, a curve CC , Fig. 1, can be represented
as

(C − O) = r(S) = fx(S)i + fy(S)j. (1)

Once the class C2 functions fx(S) and fy(S) are known, the geometric properties of CC

can be immediately determined. So, the unit local tangent and normal vectors, T and N, are
given, respectively, by

T(S) = r′(S)

|r′(S)| = f ′
x(S)

(f ′2
x + f ′2

y )1/2
i + f ′

y(S)

(f ′2
x + f ′2

y )1/2
j, (2)

N(S) = k ∧ T(S) = − f ′
y(S)

(f ′2
x + f ′2

y )1/2
i + f ′

x(S)

(f ′2
x + f ′2

y )1/2
j, (3)

Fig. 1 Two-dimensional curve
track
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and the local radius of curvature P is calculated from

P (S) = [|r′(S)|2]3/2

|r′(S) ∧ r′′(S)| = [f ′2
x (S) + f ′2

y ]3/2

|f ′
x(S)f ′′

y (S) − f ′
y(S)f ′′

x (S)| . (4)

In Eqs. (2)–(4), the apostrophe means derivation with respect to S, e.g., f ′
x = dfx/dS. More-

over, we will assume hereafter that P (S) is always larger than the radius R of the disc that
moves in contact with CC .

3 Dynamics modeling

In order to build the mathematical model of the dynamics of a disk constrained to keep
contact with a plane curve, we will consider the two types of motion that are compatible
with such constraints: (1) sliding motion (two degrees of freedom); (2) pure rolling motion
(1 degree of freedom). Those motions or modes, are governed by distinct sets of differential
equations and the sudden transition from sliding motion (mode 1) to a pure rolling one
(mode 2) is a major issue in non-smooth hybrid dynamics systems [9] that must be addressed
to tackle this problem.

3.1 Mode 1 dynamics

For the description of the kinematics of the disk, we will consider two snapshots of its
movement, as shown in Fig. 2 (as stressed before, the disk and the two dimensional curve
belong to the same plane during the motion considered in this article).

The disk has two degrees of freedom and its configuration can be completely determined
by the following generalized coordinates: θ , the angular displacement of a material point D

of the disk that, at time t = 0, was in contact with the curve CC , and a time t is in a position
D(t) such that the angle D(0)ĜD(t) equals θ ; s, the curvilinear abscissa of the center of
mass G, measured along the curve CG followed by G over time.

Fig. 2 Two snapshots of the disk
in mode 1
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It is important to stress that the curve CG must be previously generated through a nu-
merical offset operation applied to CC [7], i.e., for each abscissa S measured along CC , the
corresponding position of G is given by

G(S) = C(S) ± Rn(S) (5)

where the plus signal applies if the geometric contact point C lies in a concave region of
the curve CC and the minus sign otherwise. One must emphasize that, unless we are dealing
with a straight line or a circumference, the offset and its progenitor curve do not share the
same algebraic form, i.e., a polynomial offset curve is not a polynomial curve; the same
occurs with rational curves and even splines [14].

Considering the above discussion, we conclude that, to describe the position of G in
terms of the curvilinear abscissa s, measured along CG from a reference point Os of CG, it
will be necessary to apply a numerical algorithm to evaluate

s =
∫ G(S)

Os

∣∣G′(S)
∣∣dS (6)

even in the cases where the disk moves in contact with a curve CC described by an alge-
braic expression. Numerical methods must also be applied to determine all the other local
geometric properties of CG, like the radius of curvature ρ and the tangent and normal unit
vectors τ and n. Thus, a new set of equations, similar to Eqs. (1)–(4), can be derived for the
offset curve CG:

(G − O) = r(s) = gx(s)i + gy(s)j, (7)

τ (s) = g′
x(s)

(g′2
x + g′2

y )1/2
i + g′

y(s)

(g′2
x + g′2

y )1/2
j, (8)

n(s) = k ∧ T(s) = − g′
y(s)

(g′2
x + g′2

y )1/2
i + g′

x(s)

(g′2
x + g′2

y )1/2
j, (9)

and the local radius ρ of curvature is calculated from

ρ(s) = [g′2
x (s) + g′2

y ]3/2

|g′
x(s)g

′′
y (s) − g′

y(s)g
′′
x (s)|

. (10)

For a possible kinematic state given by vG = ṡ and ω = θ̇ , the free-body diagram of Fig. 3
will be considered for writing the motion equations of a disk in permanent contact with a
curve CC , under the action of gravity, the sliding friction force F and the rolling resistance,
described in a simplified way by a couple M .

At any instant t , the friction force and the rolling couple are given, respectively, by

F = −μN · sign(ṡ)T (11)

and

M = −μrN · sign(θ̇)k (12)

where μ and μr are the sliding and rolling friction coefficients between the disk and the
track, N is the normal component of the contact force at time t and sign(x) is a function that
evaluates to −1 if x < 0 and to +1 if x > 0.
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Fig. 3 Disk rolling and sliding
on a curve

At this point, it is important to highlight the following mathematical difficulty we must
overcome: disk kinematics can be completely determined by the state variables s, ṡ, θ , θ̇ ,
but their time evolution depends on the geometric characteristics of both the curves CC and
CG and on the kinematics of both the center of mass G and the contact point D between the
disk and the curve CC at time t (see Fig. 2).

In order to simplify the problem, we will admit that, using Eqs. (5), (6) and proper nu-
merical methods, a function

s = s(S) (13)

relating the curvilinear abscissae measured along curves CG and CC , can be obtained. The
foregoing considerations will be used to calculate the forces and moments applied to the
disk at time t . The normal component of the contact force is given by

N(t) = mg cos
(
α
(
S
(
s(t)

))) + man

(
S
(
s(t)

)
, Ṡ

(
s(t)

))
, (14)

where s(t), the curvilinear abscissa of G, known at time t , is an input data to Eq. (13)
necessary to compute the corresponding abscissa S(t) of the contact point D. Next, using
S(t) as input, we obtain α(S(t)), the angle between the local normal at CC and the vertical,
from the equation

α(S) = cos−1
(
N(S) · j

)
(15)

where N(S) is given by Eq. (3).
As the disk slides on the track, the speed Ṡ of the material point D in contact with curve,

as shown in Fig. 4, is

Ṡ = |vD| = ∣∣vG + ωk ∧ (D − G)
∣∣ = ∣∣ṡτ + θ̇k ∧ (D − G)

∣∣ = ṡ + θ̇R. (16)

Finally, the normal acceleration of the contact point D is

an = Ṡ2

P (S)
(17)

with P (S) given by Eq. (4).
Considering the instantaneous motion shown in Fig. 4, the kinetic energy of the disk is

expressed by

T = 1

2
mv2

G + 1

2
JGzω

2 = 1

2
mṡ2 + 1

2
JGzθ̇

2. (18)
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Fig. 4 Velocities of the disk in
mode 1

The virtual power δP of the forces acting on the disk in an admissible field of virtual veloc-
ities is

δP = −mgj · δG(s)

dt
− μN(S) · sign(Ṡ)T · δS

dt
T − μrN(S) · sign(θ̇ )

δθ

dt
,

and, since δG(s)/dt = ṡτ and δθ/dt = θ̇ , the above expression becomes

δP = −mgj · ṡτ − μN sign(Ṡ)Ṡ − μrN sign(θ̇)θ̇ . (19)

Defining

Γ1 = g cos
(
α
(
S(s)

)) + (ṡ + Rθ̇)2

P (S(s))
(20)

and introducing Eqs. (14)–(16) into Eq. (19) one obtains

δP = −m
[
g sin

(
β(s)

) + μΓ1 sign(ṡ + Rθ̇)
]
ṡ

− mΓ1

[
μR sign(ṡ + Rθ̇) + μr sign(θ̇)

]
θ̇ (21)

where β(s) is given by

β(s) = cos−1
(
n(s) · j

)
. (22)

Examining Eq. (21), we conclude that the generalized forces Fs and Fθ are, respectively,

Fs = −m
[
g sin

(
β(s)

) + μΓ1 sign(ṡ + Rθ̇)
]
, (23)

Fθ = −mΓ1

[
μR sign(ṡ + Rθ̇) + μr sign(θ̇)

]
. (24)

At this point we have all the elements to apply the Lagrangian equations for the general-
ized coordinates s and θ , i.e.,

d

dt

(
∂T

∂ṡ

)
− ∂T

∂s
= Fs, (25)

d

dt

(
∂T

∂θ̇

)
− ∂T

∂θ
= Fθ . (26)

Thus, we obtain the following second-order differential equations:

s̈ = −[
g sin

(
β
(
S(s)

)) + μΓ1 sign(ṡ + Rθ̇)
]
, (27)
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θ̈ = − m

JGz

Γ1

[
μR sign(ṡ + Rθ̇) + μr sign(θ̇)

]
, (28)

where Γ1 and β(s) are given, respectively, by Eqs. (20) and (22).
It is important to stress that the differential Eqs. (27)–(28) describe exclusively the motion

of the disk in mode 1. They are valid only while the normal contact force is positive, such
that

Γ1 = g cos
(
α
(
S(s)

)) + (ṡ + Rθ̇)2

P (S(s))
> 0 (29)

and the sliding speed of the disk is incompatible with pure rolling motion, i.e.:

|vD| = ṡ + Rθ̇ �= 0. (30)

From the instant that inequality of Eq. (30) no longer holds, the disk performs a free
motion (mode 3) for which the differential equations

z̈ = −g,

θ̈ = 0, (31)

and the constraints

F = N = 0 (32)

represent the new dynamic model of the disk.
On the other hand, as long as the holonomous constraint

ṡ + Rθ̇ = 0 (33)

is suddenly introduced, the disk loses one degree of freedom (s) and initiates a pure rolling
motion (mode 2) for which the coordinate θ , alone, is sufficient to describe its configuration.

3.2 Dynamical model of a disk in mode 2

During this phase of the motion, the tangential contact force between the disk and the track
satisfies the inequality

∣∣F(t)
∣∣ < μ

∣∣N(t)
∣∣ (34)

and the material point D of the disk in contact with CC coincides with I , the instantaneous
center of rotation of the disk (see Fig. 5); so, it has null velocity at this instant. In such
circumstances, the kinetic energy is given by

T = 1

2
JIzθ̇

2 = 1

2

(
JGz + mR2

)
θ̇2 (35)

and the virtual power δP of the forces acting on the disk in an admissible field of virtual
velocities is

δP = −mgj · δG(s)

dt
− μrN(S) · sign(θ̇)

δθ

dt
.
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Fig. 5 Disk rolling without
sliding on a plane curve

Considering that s is no more a generalized coordinate, but a dependent variable satisfy-
ing holonomous constraint of Eq. (33), we write

δG(s)

dt
= ṡτ = −θ̇Rτ .

Noticing, moreover, that the speed of instant center I is

|vI | = Ṡ = θ̇R,

and defining

Γ2 = g cos
(
α(Rθ)

) + θ̇2R2

P (Rθ)
, (36)

with P (Rθ) and α(rθ) given, respectively, by Eqs. (4) and (15), the expression of the virtual
power becomes

δP = −mgj · (−θ̇R)τ − μrmΓ2 sign(θ̇)θ̇ . (37)

Introducing Eqs. (14)–(15) into Eq. (37) one finally obtains

δP = [
mgR sinβ(Rθ) − μrmΓ2 sign(θ̇)

]
θ̇ , (38)

with β(Rθ) given by Eq. (22). From Eq. (38) the generalized force Fθ immediately follows:

Fθ = mgR sinβ(Rθ) − μrmΓ2 sign(θ̇). (39)

Using Eqs. (35) and (39) in the Lagrange equation for coordinate θ (Eq. (26)), we arrive
at the second-order differential equation that rules mode 2:

θ̈ = − m

JGz + mR2

[
gR sinβ(Rθ) + μrΓ2 sign(θ̇)

]
(40)

where P (Rθ), α(Rθ), and β(Rθ) are, respectively, given by Eqs. (4), (15), and (22).

4 State-space variables

In order to apply the numerical methods of integration, the second-order differential
Eqs. (27)–(28) and (40) are represented in a state-space form. For mode 1, the state-space
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equations are

ds

dt
= vs,

dvs

dt
= −g sin

(
β
(
S(s)

)) − μΓ1 sign(vs + Rω),

dθ

dt
= ω,

dω

dt
= − m

JGz

Γ1

[
μR sign(vs + Rω) + μr sign(ω)

]
,

(41)

whereas mode 2 is described by the first-order equations shown:

dθ

dt
= ω,

dω

dt
= − m

JGz + mR2

{
gR sinβ(Rθ) + μrΓ2 sign(ω)

}
.

(42)

Therefore, ignoring the case of contact loss, simulating the plane motion of a disk that
is permanently in contact with a class C2 two-dimensional curve of generic shape and in
the same plane of this curve requires the integration of one of the two systems of first-
order differential equations, (41) or (42), depending on whether the constraint of Eq. (33) is
satisfied or not.

5 Simulation issues

Besides the challenges faced to build this dynamic model, the simulation of these equations
is also not free of difficulties, which we classify into three categories: (1st.) geometry of the
curves; (2nd.) mode switching; (3rd.) feasible initial kinematic states.

5.1 Calculating geometrical properties of the curves

The geometry of curve CC is of major concern. We could arbitrarily increase the degree
of difficulty of the problem by choosing a curve with complicate geometry, but such an
approach would not contribute to the identification of the essential geometric problems that
must be solved during the simulation. Thus, from this point onwards, we will admit that the
disc moves in contact with a well-known curve—a convex function defined by the equation

y = 1

2p
x2 (43)

with p ∈ R, p > 0, as shown in Fig. 6.

Fig. 6 Curve used in the
simulations
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In vector parametric form, this equation can be written as

r(x) = fx i + fyj = xi + 1

2p
x2j. (44)

For this particular curve, all the relevant geometric properties can be determined from
the value of the Cartesian abscissa x. Since

lim
|�r|→0

�S/|�R| = 1,

we can write

dS

dx
= ±

∣∣∣∣ dr
dx

∣∣∣∣ = ±
√

f ′2
x + f ′2

y = ±
√

1 +
(

x

p

)2

= ±
√

x2 + p2

p
(45)

where the sign + must be used if x > 0 and − if x < 0.
Through the integration of Eq. (45), we obtain the curvilinear abscissa S as a function of

the parameter x, i.e.,

S = ±
∫ x

0

√
x2 + p2

p
dx (46)

where the origins O of (x, y) and OS of S coincide, as shown in Fig. 6.
Unit tangent and normal vectors are given, respectively, by

T(x) = p√
x2 + p2

i + x√
x2 + p2

j, (47)

N(x) = − x√
x2 + p2

i + p√
x2 + p2

j, (48)

the radius of curvature P is

P (x) = p

[
x2 + p2

p2

]3/2

= (x2 + p2)3/2

p2
(49)

and the angle α between the vertical and the local tangent to the curve is obtained from

α(x) = cos−1
(
T(x) · i

) = cos−1

(
p√

x2 + p2

)
(50)

Since the geometric properties of the parabola (Eqs. (44)–(50)) are parametrized in terms
of x and not in terms of the curvilinear abscissa S, as required by the generic dynamic
model synthesized for all kinds of two-dimensional curves (Eqs. (41)–(42)), we suggest the
algorithm of Table 1 to obtain the required properties.

As discussed in Sect. 3.1, the locus of the center of mass G of the disk is a curve CG

generated from CC through an offset operation (Eq. (5)). In the case of a parabola described



438 F.P.R. Martins et al.

Table 1 Algorithm for
calculating local geometric
properties of the curve CC during
the simulation

1. Along the range [xmin, xmax], apply a quadrature algorithm to
evaluate Eq. (46) and construct the table Si = Si(xi ).

2. Construct the inverse table xi = xi (Si ).

3. During the simulation, whenever necessary, interpolate xi = xi (Si )

in order to calculate the abscissa x̄ corresponding to the current
curvilinear abscissa S̄.

4. With x̄ obtained in step 3 apply Eqs. (49)–(50) to calculate the
radius of curvature P(x̄) and the angle α(x̄).

Table 2 Algorithm for
calculating local geometric
properties of the curve CG

1. for each point C(xi , yi ) of CC determine the corresponding point
G(xi , yi ) of CC using Eq. (5).

2. Along the range [xmin, xmax], estimate the curvilinear abscissa s

for each x as
sj = 0, if j = 0,

sj =
j∑

i=2

√
(xi − xi−1)2 + (yi − yi−1)2 if j > i.

3. Construct the tables si = si (xi ), si = si (y(xi )), xi = xi (si ), and
yi = yi (si ).

4. Using the set of points G(xi , yi ) obtained in step 1 and the tables
xi = xi (si ) and yi = yi (si ) obtained in step 3, build the partial

derivative tables g′
x(si ) = ∂G(si )

∂x
≈ si−si−1

xi−xi−1
,

g′
y(si ) = ∂G(si )

∂y
≈ si−si−1

yi−yi−1
, g′′

x (si ) = dg′
x (si )
ds

≈ g′
x (si )−g′

x (si−1)
si−si−1

,

and g′′
y (si ) = dg′

y (si )

ds
≈ g′

y (si )−g′
y (si−1)

si−si−1
.

5. Use the tables g′
x(si ) and g′

y(si ) to build the vector function tables
n = n(si ), Eq. (9).

6. Use the functions g′
x(si ), g′

y(si ), g′′
x (si ), and g′′

y (si ) to build the
function ρ = ρ(s), Eq. (10).

7. Use the function n = n(si ) and Eq. (22) to determine the function
β = β(s).

by Eq. (43), this offset curve has a closed implicit equation [17] given by

−y2 + 16R2

p
x2y2 − 4R2

p
x2y + R2 + 10R2

p
x2 − 16

p
x2y

− 24R4

p
x2 + 8R2y2 + 1

p
x2y − 8R2y + 12R2

p2
− 4x4y2

+ 10

p2
x4y + 16

p
x2y3 − 16R4y2 − 32R4y + 16R2

(
√

2p)3

− 1

4p2
x4 + 8R4 + 8y3 − 2

p3
x6 + 16R6 − 16y4 = 0. (51)

However, since this equation has a rather cumbersome form, it is easier to obtain the
geometric properties of CG using a numerical approach based on Eqs. (5)–(6) as suggested
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Fig. 7 Plot of S = S(s)

Fig. 8 Plot of β = β(s)

in Sect. 3.1 of this article. Thus, by applying the algorithm of Table 2, we can determine all
the properties of curve CG required by the dynamic model (Eqs. (41)–(42)).

Figures 7, 8, 9 and 10 show the plots of S = S(s) (notice that S = S(s) is not a straight
line), β = β(s), α = α(s), and P = P (s) calculated according to the algorithm of Tables 1
and 2, in the case that the curve CG is generated from a disk of radius R = 0.75 m moving
in contact with a concave parabola of minimum radius of curvature P = 40 m.

5.2 Mode switching

During the simulations, handling the two dynamic models describing the movement of the
disk Eqs. (40)–(41) is a matter of utmost importance. Let us assume that the initial kine-
matic conditions of the disk moving in contact with the concave parabola are compatible
with mode 1. As the parabola has a single minimum point and the kinetic energy of the disk
gradually decreases due to friction, a unique and definitive transition to mode 2 will eventu-
ally occur after some time. Observe that this movement could be quite different if the curve,
unlike a parabola, had several plateaus delimited by steep ramps as illustrated in Fig. 11.
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Fig. 9 Plot of α = α(s)

Fig. 10 Plot of P = P(s)

Fig. 11 Movement transitions
on a curve exhibiting several
plateaus

In other words, the algorithm required to control the transitions between the two modes is
strongly dependent on the geometry of the curve.

Identifying the necessary and sufficient conditions for the mode switching is a crucial
question. If the disk is in mode 1, it cannot switch to mode 2 unless constraint of Eq. (33)
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Fig. 12 Disk about to start
moving in mode 2

be satisfied, i.e., the point D of the disk in contact with curve CC at time t coincides with
the disk instantaneous center of rotation. However, verifying at each step of the algorithm
whether this constraint came into effect or not, is not sufficient to ensure that a transition
to mode 2 occurs. Let us assume, for instance, that the disk starts from rest at a point on
the curve where the slope is quite steep. In such a situation, although constraint of Eq. (33)
is satisfied, the disk may slide immediately after it is released if the steepness of the curve
is high enough. In other words, there exists a maximum local angle slope compatible with
mode 2.

To calculate this critical angle we will analyse the expression of the disk sliding acceler-
ation. Since Ṡ = ṡ + Rθ̇ , we have

S̈ = s̈ + Rθ̈ = −[
g sin

(
β
(
S(s)

)) + μΓ1 sign(ṡ + Rθ̇)
] + Rθ̈. (52)

Then, inserting Eq. (28) into Eq. (52), we obtain

S̈ = −[
g sin

(
β
(
S(s)

)) + μΓ1 sign(ṡ + Rθ̇)
]

− m

JGz

RΓ1

[
μR sign(ṡ + Rθ̇) + μr sign(θ̇)

]
. (53)

Now we will consider a snapshot of the movement in which the disk, situated in a position
where the slope of the curve is quite sharp, is descending the left branch of the parabola with
a positive but almost null sliding velocity vC (Fig. 12) and, consequently, with a positive
but almost null angular velocity θ̇ . The disk cannot start moving in mode 2 unless S̈ < 0.
Therefore, the maximum angle αcrit compatible with mode 2 is obtained from Eq. (53),
admitting that

1. ṡ + Rθ̇ > 0 but ṡ + Rθ̇ → 0 ⇒ sign(ṡ + Rθ̇) = 1 and S̈ → 0;
2. θ̇ > 0 but θ̇ → 0 ⇒ sign(θ̇) = 1 and θ̈ → 0.

By imposing the above conditions on Eq. (53), we obtain

[
μ − mR

JGz

(μR + μr)

]
cosαcrit

(
S(s)

) + sinβ(s) = 0, (54)

i.e., a transcendental algebraic equation which, solved by any numerical method, gives the
value of the critical angle αcrit.

From the above discussion we conclude that the necessary and sufficient conditions for
the occurrence of a single and definitive mode 1 to mode 2 switching are: (1) the constraint
Eq. (33) is satisfied; (2) the disk is in contact with a point C(S) of the track for which
α(S) < αcrit. It is important to emphasize that, in the transition from mode 1 to mode 2
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the acceleration of G undergoes a sudden discontinuity, but the convergence of the sliding
velocity to the null value occurs smoothly.

Now, we must verify if a switching from mode 2 to mode 1 is possible. Supposing that
the disk starts the motion in mode 2, we found that, unless it reaches, at a certain instant, a
point C(S) of the track for which |α(S)| > |αcrit|, switching to mode 1 cannot occur, given
that constraint of Eq. (33) is always satisfied by Eqs. (42). So, we logically might infer that
a necessary condition for the disk in mode 2 to switch to mode 1 is that it starts the motion
with mechanical energy E greater than a critical value given by

Ecrit = mgyG(scrit) (55)

in which scrit = s|α(s)=αcrit is obtained from the plot of α = α(s) and yG(scrit), the correspond-
ing height y of the center G, can be calculated from Eq. (5).

The above proposition, however, leads to indeterminacy: in mode 2, constraint Eq. (33)
is always satisfied, but in mode 1, the acceleration of the center of mass G, given by

−[
g sin

(
β
(
S(s)

)) + μΓ1 sign(ṡ + Rθ̇)
]

cannot be evaluated, since sign(x) is not defined for x = 0. Moreover, since the normal force
N is always positive, there is no loss of contact with the track and, therefore, it cannot be
stated that a sudden variation in the speed of contact point C, from zero to Rθ̇ may occur.

At this point we clearly notice that, in mode 1, differential equations (41) would not prop-
erly work unless, at the transition point, the sliding velocity of the disk underwent an abrupt,
discontinuous and well-known variation that, unfortunately, Coulomb’s friction laws have
no way of determining. Hence, we must answer the question: could such an event occur?
The answer is ‘yes’, it actually could occur but, from the hypotheses adopted to build our
dynamical model, it operates only in two modes: sliding (mode 1) and pure rolling (mode 2).
For the occurrence of a sudden change in the sliding velocity of the disk, it must be assumed
that it undergoes tangential collision, thus entering in mode 3 (Eqs. (31)), and returns to the
track in mode 1 with a sliding velocity determined from the theory of friction collisions.
This paradox was firstly identified by Painlevé [3], when he analysed the problem of a rigid
homogeneous slender rod moving in contact with a flat rough surface. It can actually arise
in other hybrid dynamical systems, specially those subjected to unilateral constraints and
constitutive laws such as the Coulomb friction which, because of its simplicity, does not
accurately describe the mechanism of contact between two non-ideal rigid bodies having
rough surfaces.

Therefore, we conclude that, strictly considering all the simplified hypotheses used to
build the dynamic model of Eqs. (41)–(42) of a disk moving in contact with a parabola:
(1) switching from mode 2 to mode 1 is not possible (we will return to this topic in the
next session, where we investigate the possibility of emulating a switching from mode 2 to
mode 3 through a friction collision model); (2) as the disk cannot start the motion in mode 2
with a mechanical energy E > Ecrit without reaching an undecidable status, initial values for
the generalized coordinates s and θ satisfying the constraint Eq. (33) cannot be arbitrarily
chosen, but only those for which E ≤ Ecrit.

The previous analysis allows us to construct a simple decision making rule (Table 3) to
verify, at each instant t , if a mode switching event occurs. As previously discussed, this
rule does not provide the possibility of the disk undergoing free-body motion. In addition,
we stress that this algorithm applies to convex functions such as the one we explore in this
paper.
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Table 3 Simplified rule to select
the suitable mode at each step of
the simulation: (a) if disk starts in
mode 2 at a position where
α < αcrit but E > Ecrit,
Painlevé’s paradox will
eventually happen; (b) disk in
mode 1 until transition to mode 2
occurs; (c) disk in mode 2 until
the end of simulation; (d) disk in
mode 1 until transition to mode 2
occurs

if ((t = 0) and (α < αcrit) and ṡ(0) = Rθ̇(0) and (E > Ecrit)

then exit; see (a)

else {
if (|α(S(s(t)))| > αcrit)

then do

run Eqs. (41)

while F = μN ; see (b)

else if (ṡ(t) + Rθ̇(t) = 0)

then do

run Eqs. (42)

until t = tend see (c)

otherwise

run Eqs. (41)

while F = μN see (d)

}

5.3 Initial kinematic conditions compatible with dynamics

Although ṡ and θ̇ are generalized velocities (so, independent variables in phase space), this
does not mean that they can be arbitrarily chosen at time t = 0. As pointed out by [3], the
problem of identifying a compatible initial kinematic condition for a moving plane rigid
body S in contact with a plane fixed obstacle Σ , where dry friction forces intervene, has
been previously approached by Painlevé, who discovered that an arbitrary initial kinematic
imposed to S can give rise either to indeterminacy or to impossibility. To avoid such impos-
sible initial states, Delassus [5] proposed the following solution: “to study the motion of a
rigid body S in contact with a fixed obstacle Σ , under the action of dry friction forces, it is
necessary, in some circumstances, to make a previous study of a problem of friction collision
between S and Σ”.

In order to better discuss this subject, we shall consider the schema shown in Fig. 13(a),
where we see the disk connected to a cart at the instant t = 0−, immediately before being
put on the track. For this instant, we will suppose that: (1) the distance between G and the
track is R + ε, where ε is a very small distance, just sufficient to prevent the disk from
touching the track at t = 0−; (2) the disk has arbitrary initial kinematic conditions given by
ṡ−

0 and θ̇−
0 .

Figure 13(b) shows the instant at which the disk is suddenly disconnected from the cart
and, due to the impulsive efforts caused by the collision with the track, assumes a new
kinematic state given by ṡ+

0 and θ̇+
0 .

There are numerous models proposed in the literature to physically describe the collision
between two rigid bodies. In this article we will apply an approach based on the classic the-
ory of friction collisions, originally proposed by Darboux, as stated in detail by [3] and [4].
Besides admitting that the bodies have a rigid core wrapped by a thin deformable film, the
above-mentioned theory is based on five postulates [3] that permit to completely determine
the new kinematic states of the bodies immediately after collision occurs. In Fig. 14, the
essential elements of the friction collision between the disk and the track are presented.

The velocity of G at instant t = 0− is

v0−
G = vT

1 T + vN
1 N (56)
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Fig. 13 Kinematic initial
conditions of the disk: (a)
immediately before touching the
track; (b) immediately after
touching the track

Fig. 14 Friction collision
between disk and track

where vT
1 and vN

1 are the components of v0−
G along the axes T and N, respectively. At the

same instant t = 0−, an unknown impulse

π = ΠT T + ΠN N (57)

is applied to the point D of the disk. From the conservation of momentum, we have

ΠT = m
(
vT

2 − vT
1

)
,

ΠN = m
(
vN

2 − vT
1

)
,

(58)

while the conservation of angular momentum gives

(D − G) ∧ π = mr2
g (ω2 − ω1)k =⇒ rΠT = mr2

g (ω2 − ω1) (59)

where rg is the radius of gyration of the disk and vT
2 T + vN

2 N and ω2 are, respectively, the
velocity of G and the angular velocity of the disk immediately after the collision.

This system is indeterminate, since we have only three equations (58), (59) and five un-
knowns (vT

2 , vN
2 ,ω2,ΠT ,ΠN). Darboux’s procedure to raising the problem’s indeterminacy

encompasses two steps: 1) postulate that the normal components of the velocities of contact
point D, immediately before and after the collision, are related by

V2 = −eV1 (60)
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where e is the coefficient of restitution and 2) describe the motion of the body during the
interval (0−,0+) of collision, using the equations of rigid-body dynamics,

m
dvT

dt
= FT ,

m
dvN

dt
= FN,

(D − G) ∧ (FT T + FN N) = mr2
g

dω

dt
k = bFT k,

(61)

in which FT and FN , respectively, the tangential and normal components of the limited
contact force between the disk and the track, depend on the tangential component U of the
velocity vD of the contact point D of the disk

vD = vG + ωk ∧ (D − G) = (
vT + Rω

)
T + vN N. (62)

So far, we have seven unknowns (vT
2 , vN

2 ,ω2,ΠT ,ΠN,FT ,FN) and 7 equations to solve
for them, namely, the four algebraic equations (58), (59) and (60), and the three first-order
differential equations (61). Instead of integrating these last three equations, Brossard [4]
analyses the graphs of the sliding velocity v (vT , vN ) versus F (FT ,FN ) during the interval
of collision, from t = 0− to t = 0+. The author concludes that, for an initial sliding velocity
vT

0− = U1 > 0, if

U1

V1
≥ r2

g

μ(R2 + r2
g )

(1 + e) (63)

it can be ensured [4] that vT remains positive throughout the duration of the collision, i.e.,
along all the (t = 0−, t = 0+) interval. In such a case the kinematic state of the disk, as soon
as it is put on the track, is given by

vT
2 = vT

1 + μ(1 + e)V1,

vN
2 = vN

1 − (1 + e),

ω2 = ω1 + r

r2
g

μ(1 + e)V1.

(64)

Otherwise, in the case vT
0− = U1 < 0, Eqs. (64) change to

vT
2 = vT

1 − μ(1 + e)V1,

vN
2 = vN

1 − (1 + e),

ω2 = ω1 − r

r2
g

μ(1 + e)V1.

(65)

In the above equations, we must use e = 0, since, at instant 0−, the distance between the
surface of the disk and the track is arbitrarily small and, at instant 0+, we suppose that the
disk maintains contact with the track.

Now, we return to the controversial point discussed in the last topic. We know that, when
the disk starts with E > Ecrit in mode 2 and reaches a point of the track for which s = scrit,
it actually may lose contact with the track (enter in mode 3) and, immediately, undergoes
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an abrupt change in its sliding velocity (enter in mode 1). Hence, we must verify if the
Darboux friction collision equations can predict such an event. Admitting that the initial
sliding velocity of the disk at time 0− is U1 = 0, we found that the application of the above
mentioned equations are unable to make any forecast unless the disk mass distribution is
non-homogeneous and the friction coefficient is extremely low [4]. In case, for instance, co-
ordinates of G, measured along the directions of T and N are given by (a, b) = (R/100,R),
and considering that the radius of gyration of a disk is rg = R/

√
2, Darboux’s friction colli-

sion equations provides a solution if

μ <
ab

b2 + r2
g

= R2/100

3R2/2
≈ 0.007 (66)

Since this is not the case we are dealing with, we see that the chosen friction collision model
is not suitable to detect a likely switching of the disk from mode 2 to mode 3 and then
from mode 3 to mode 1. Then other friction collision models and friction laws (for instance,
Contensou’s friction model [10]) must be investigated in order to build a dynamical model
that does not exhibit this paradox.

6 Simulation results and discussion

The motion of a disk constrained to be in permanent contact with and in the same plane as a
concave parabola was simulated using the dynamical models described by the two systems
of first-order differential equations (41) and (42). At each time-step of simulation, two aux-
iliary algorithms were used: one for calculating local geometrical properties of curves CC

and CG (Tables 1 and 2) required for Eqs. (41) and (42) and another to select, among the two
available dynamic models, the one that is compatible with the current kinematic state of the
disk (Table 3). Moreover, when the disk starts from rest in mode 1, the equations provided
by Darboux’s friction collisions theory, like Eqs. (64)–(65), were applied to determine the
correct initial kinematic conditions; if it starts in mode 2, initial kinematic state is set up in
order to avoid a situation in which Painlevé’s paradox occurs. The computational dynamic
model was written with Scilab 5.5.1. Because the disk behaves as a non-smooth dynamic
system, it was necessary to use numerical integration methods appropriate for stiff problems
[18].

The values assigned to the physical and geometrical parameters of the model are given
in Table 4.

A total of eight simulations for initial conditions based on s−
0 , ṡ−

0 , and θ̇−
0 taken at

[−10.0,−2.0] m, [−0.5,0.5] m/s, and [−15π,15π ] rad /s intervals, respectively, were per-
formed. In Table 5 we show the corresponding initial values ṡ+

0 and θ̇+
0 calculated according

to Eqs. (64)–(65). The values of the sliding velocities v−
C immediately before the collision

are also shown, in order to facilitate the analysis. Each initial condition is drawn with a
different color, which will later be used in the simulation charts.

Table 4 Physical and geometric
parameters adopted in the
simulations

R mass g p μ μr e

m kg m/s2 m – m –

0.10 2.47 9.81 40.0 0.42 0.5 · 10−3 0.0
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Table 5 Initial conditions immediately before and immediately after the disk is put on the track

s−
0 ṡ−

0 θ̇−
0 v−

C
s+
0 ṡ+

0 s+
0 Line color

m m/s rad/s m/s m m/s rad/s

−10.000 −2.000 −47.124 −6.712 −10.000 −1.942 −45.965 black

−10.000 −2.000 47.124 2.712 −10.000 −2.057 45.965 blue

−10.000 −2.000 −47.124 −2.712 −10.000 2.057 −45.965 green

−10.000 −2.000 47.124 6.712 −10.000 1.942 45.965 cyan

−2.000 −2.000 −47.124 −6.712 −2.000 −1.941 −45.948 red

−2.000 −2.000 47.124 2.712 −2.000 −2.059 45.948 magenta

−2.000 −2.000 −47.124 −2.712 −2.000 2.059 −45.948 orange

−2.000 −2.000 47.124 6.712 −2.000 1.941 45.948 brown

Fig. 15 Initial kinematic state of
the disk when subjected to a
tangential impulse

Fig. 16 Curvilinear velocity of
G versus time for the initial
conditions given in Table 5

Figure 15 shows the disk at an initial kinematic state s−
0 = −10.000m/s and θ̇−

0 =
−47.124m/s, when it suddenly touches the track and is submitted to a tangential impulse
ΠT T. Both the impulse and the corresponding impulsive moment are opposed to the direc-
tions of ṡ−

0 and θ̇−
0 , respectively. As a consequence, their magnitudes diminish, as shown in

Table 5 (first line).
Figures 16 and 17 show the time evolution of the state variables ṡ = ṡ(t) and θ̇ = θ̇ (t)

for the initial conditions set in Table 5. In those graphs, one can identify the transition from
mode 1 to mode 2: it is sufficient to observe that, around 0.3 s, the curvatures of the lines on
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Fig. 17 Angular velocity versus
time for the initial conditions
given in Table 5

Fig. 18 Manifold s, ṡ, θ̇

the graphs undergo abrupt variations due to the sudden and discontinuous change of both s̈

and θ̈ .
Figures 18 and 19 show two manifolds of the phase space s, ṡ, θ , θ̇ . In Fig. 18, the

trajectories s = s(ṡ, θ̇ ) concerning mode 1, fall into distinct points of the same stable flat
spiral node, characteristic of mode 2, as soon as the holonomous constraint of Eq. (33) is
suddenly introduced. Starting from an initial mode 1 state, the dissipation of the kinetic
energy of the disk by friction causes the disk to evolve to a kinematic state compatible with
mode 2. From then on, it remains in this mode, since the parabola has a single minimum
point.

In Fig. 19 we chose a three-dimensional perspective to facilitate the observation of the
phase space degeneration into a diagonal plane containing curves θ̇ = θ̇ (ṡ, θ) describing
mode 2. In this figure, the crossing of the phase state trajectories at the departure initial
states is only apparent, since those points correspond to different values of the curvilinear
abscissa s. In other words, despite the non-smoothness dynamics characteristics, the system
of differential Eqs. (41)–(42) satisfy all the conditions of the Cauchy–Lipschitz theorem
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Fig. 19 Manifold ṡ, θ , θ̇

[15]; so, for a given initial and dynamically feasible condition, there is a unique solution for
those differential equations.

Many other simulations could be presented, encompassing variations in the values of the
parameters of the model, like the radius R and the mass m of the disk, the minimum radius
P of curvature of the track and the friction coefficients μ and μr . The investigation of the
effects of those parameters is an important issue in nonlinear dynamics analysis, since it
would allow the identification of possible bifurcation points and other interesting aspects of
symplectic geometry. However, in our opinion, this would only cause the reader to get away
from the vital issues discussed in this article.

7 Conclusions

In this article, the dynamic model of a disk that moves on a track described by a two-
dimensional parametric curve, was thoroughly explored. Differently from the elementary
cases in which the track has the form of a straight line or an arc of circumference, any other
continuous two-dimensional curves introduce considerable mathematical difficulties in the
modeling of the problem, forcing the use of differential geometry methods and numerical in-
terpolation algorithms. In addition, an appropriate analysis must be made to accurately deter-
mine the instant of transition between the two modes admissible for the motion—sliding and
pure rolling motion. Depending on the shape of the curve, one or more transitions between
these modes may occur. Furthermore, the need for establishing initial conditions compatible
with the dynamics, requires the application of the methods of a suitable friction collisions
theory.

The developed model was simulated assuming that the disk moved in permanent contact
with and in the same plane as a parabolic curve. Such a curve was chosen for the study
because, in spite of its simple mathematical representation, it allows us to tackle the essential
geometrical difficulties that must be taken into account in order to build a proper model of
the disk moving in contact with a generic two-dimensional curve.

The simulations of the model, performed for distinct initial conditions – disk starting in
mode 1 and evolving to mode 2, proved to be consistent with the expected dynamic behavior
of the disk. Thanks to the simple shape of the track, the qualitative dynamic behavior of the
disk could have been foreseen; however, coherent quantitative results can only be obtained
at the expense of a considerable modeling and analysis effort.
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The main drawback of the developed dynamic model concerns its inability to overcome a
situation characterized by the well-known Painlevé’s paradox, where the use of a simplistic
Coulomb friction model and the presence of a unilateral constraint give rise to a mathe-
matical indeterminacy. As a consequence, the model is not capable of properly simulating
motions for which the disk starts in mode 2 with a mechanical energy E greater than a
threshold value Ecrit, since in such situations, an indeterminacy arises at the instant when
switching from mode 2 to mode 1 would be physically necessary.

In order to generate initial kinematic states compatible with dynamics, we include the
Darboux friction collision equations in our model and applied them before starting each
new simulation. Unfortunately, analysis shows that Darboux’s friction collision equations
cannot generate a new kinematic state compatible with mode 1 if the disk is in mode 2, but
on the verge to switch to model 1 as previously discussed.

We may also assert that the approach here adopted can circumvent the difficulties in-
herent to the focused problem and help researchers to model dynamic systems in which
non-elementary geometry and non-smooth dynamics are key elements of the problem.

Important issues concerning nonlinear dynamics, such as the identification of bifurca-
tions and other features of symplectic geometry were not approached in this paper, but are
currently under investigation by our group.
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